4.4 Article

Ethanol-Induced Cervical Sympathetic Ganglion Block Applications for Promoting Canine Inferior Alveolar Nerve Regeneration Using an Artificial Nerve

期刊

出版社

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/58039

关键词

Neuroscience; Issue 141; neuroscience; in situ tissue engineering; artificial nerve conduit; polyglycolic acid-collagen tube; cervical sympathetic ganglion block; canine model

资金

  1. Department of Bioartificial Organs in Kyoto University Institute for Frontier Medical Science

向作者/读者索取更多资源

Polyglycolic acid collagen (PGA-C) tubes are bio-absorbable nerve tubes filled with collagen of multi-chamber structure, which consist of thin collagen films. Favorable clinical outcomes have been achieved when using these tubes for the treatment of damaged inferior alveolar nerve (IAN). A critical factor for the successful nerve regeneration using PGA-C tubes is blood supply to the surrounding tissue. Cervical sympathetic ganglion block (CSGB) creates a sympathetic blockade in the head and neck region thus increasing blood flow in the area. To ensure an adequate effect, the blockade must be administered with local anesthetics one to two times a day for several consecutive weeks; this poses a challenge when creating animal models for investigating this technique. To address this limitation, we developed an ethanol-induced CSGB in a canine model of long-term increase in blood flow in the orofacial region. We examined whether IAN regeneration via PGA-C tube implantation can be enhanced by this model. Fourteen Beagles were each implanted with a PGA-C tube across a 10-mm gap in the left IAN. The IAN is located within the mandibular canal surrounded by bone, therefore we chose piezoelectric surgery, consisting of ultrasonic waves, for bone processing, in order to minimize the risk of nerve and vessel injury. A good surgical outcome was obtained with this approach. A week after surgery, seven of these dogs were subjected to left CSGB by injection of ethanol. Ethanol-induced CSGB resulted in improved nerve regeneration, suggesting that the increased blood flow effectively promotes nerve regeneration in IAN defects. This canine model can contribute to further research on the long-term effects of CSGB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据