4.5 Article

Estimation of Energy and Time Savings in Optical Glass Manufacturing When Using Ultrasonic Vibration-Assisted Grinding

出版社

KOREAN SOC PRECISION ENG
DOI: 10.1007/s40684-019-00022-7

关键词

Ultrasonic vibration-assisted grinding; Specific grinding energy; Energy saving; Sub-surface damage

资金

  1. National Natural Science Foundation of China [51475310]

向作者/读者索取更多资源

Energy and time savings are highly important aspects of green manufacturing. Ultrasonic vibration-assisted grinding (UVAG) is a high-efficiency, low-energy-consumption processing method for optical components made from hard and brittle materials. This work presents an experimental investigation of the specific grinding energy and the subsurface damage depth in UVAG of optical glasses to estimate the increased energy and time savings produced when using UVAG in optical glass manufacturing. The normal and tangential grinding forces of traditional grinding (TG) and axial UVAG processes on optical glasses were investigated for various machining parameters. The specific grinding energies during the TG and UVAG of the optical glasses were calculated and analyzed from the perspective of the energy consumption of the grinding process. The subsurface damage depths in optical glass during TG and UVAG were measured as an estimate of the machining quality, and the magnetorheological polishing spot method was used to analyze the time saved in subsequent polishing processes. The results show that UVAG can reduce energy consumption during the grinding of glass and produce significant time savings in subsequent polishing processes. The UVAG process therefore shows good potential for use in green manufacturing of optical components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据