4.4 Article

A highly efficient and multifunctional biomass supporting Ag, Ni, and Cu nanoparticles through wetness impregnation for environmental remediation

期刊

GREEN PROCESSING AND SYNTHESIS
卷 8, 期 1, 页码 309-319

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/gps-2018-0101

关键词

Ag@TP; bactericidal activity; dyes reduction; nitrophenols reduction; turmeric powder

向作者/读者索取更多资源

Plant-based materials are reported to have a wide range of applications in the environmental and biomedical sectors. In this report, we present an economic and environmentally friendly supported turmeric powder (TP) biomass for the support of Ag, Ni and Cu nanoparticles (NPs) designated as Ag@TP, Ni@TP and Cu@TP. The in situ syntheses of the stated NPs were achieved in aqueous medium using NaBH4 as a reducing agent. The prepared NPs were applied for the degradation of o-nitrophenol (ONP), m-nitrophenol (MNP),p-nitrophenol (PNP), methyl orange (MO), Congo red (CR), rhodamine B (RB) and methylene blue (MB). Initially, Ag@TP, Ni@TP and Cu@TP were screened for the MO dye and antibacterial activity, where Ag@TP displayed the strongest catalytic activity for MO and bactericidal activities as compared to Ni@TP and Cu@TP. The quantity of metal ions adsorbed onto the TP was investigated by atomic absorption spectroscopy. The Ag@TP, Ni@TP and Cu@TP were characterized through X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS) and field emission scanning electron microscope (FESEM) analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据