4.6 Article

Ag/Ag2O as a Co-Catalyst in TiO2 Photocatalysis: Effect of the Co-Catalyst/Photocatalyst Mass Ratio

期刊

CATALYSTS
卷 8, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/catal8120647

关键词

photocatalysis; silver(II) oxide; titanium dioxide; mechanical mixture; in situ deposition; hydrogen evolution

向作者/读者索取更多资源

Mixtures and composites of Ag/Ag2O and TiO2 (P25) with varying mass ratios of Ag/Ag2O were prepared, employing two methods. Mechanical mixtures (TM) were obtained by the sonication of a suspension containing TiO2 and Ag/Ag2O. Composites (TC) were prepared by a precipitation method employing TiO2 and AgNO3. Powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ag(0) and Ag2O. The activity of the materials was determined employing methylene blue (MB) as the probe compound. Bleaching of MB was observed in the presence of all materials. The bleaching rate was found to increase with increasing amounts of TiO2 under UV/vis light. In contrast, the MB bleaching rate decreased with increasing TiO2 content upon visible light illumination. XRD and XPS data indicate that Ag2O acts as an electron acceptor in the light-induced reaction of MB and is transformed by reduction of Ag+, yielding Ag(0). As a second light-induced reaction, the evolution of molecular hydrogen from aqueous methanol was investigated. Significant H-2 evolution rates were only determined in the presence of materials containing more than 50 mass% of TiO2. The experimental results suggest that Ag/Ag2O is not stable under the experimental conditions. Therefore, to address Ag/Ag2O as a (photo) catalytically active material does not seem appropriate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据