4.4 Article

Differential equations from unitarity cuts: nonplanar hexa-box integrals

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP01(2019)006

关键词

Perturbative QCD; Scattering Amplitudes

资金

  1. Alexander von Humboldt Foundation
  2. U.S. Department of Energy [DE-SC0009937]
  3. U.S. Department of Energy (DOE) [DE-SC0009937] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

We compute E-factorized differential equations for all dimensionally-regularized integrals of the nonplanar hexa-box topology, which contribute for instance to 2-loop 5-point QCD amplitudes. A full set of pure integrals is presented. For 5-point planar topologies, Gram determinants which vanish in 4 dimensions are used to build compact expressions for pure integrals. Using unitarity cuts and computational algebraic geometry, we obtain a compact IBP system which can be solved in 8 hours on a single CPU core, overcoming a major bottleneck for deriving the differential equations. Alternatively, assuming prior knowledge of the alphabet of the nonplanar hexa-box, we reconstruct analytic differential equations from 30 numerical phase-space points, making the computation almost trivial with current techniques. We solve the differential equations to obtain the values of the master integrals at the symbol level. Full results for the differential equations and solutions are included as supplementary material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据