4.4 Article

Thermalization, viscosity and the averaged null energy condition

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 10, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP10(2018)028

关键词

Quark-Gluon Plasma; Effective Field Theories

资金

  1. DOE [DE-SC0014123, DE-SC0018134]
  2. Simons Foundation
  3. U.S. Department of Energy (DOE) [DE-SC0018134, DE-SC0014123] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

We explore the implications of the averaged null energy condition for thermal states of relativistic quantum field theories. A key property of such thermal states is the thermalization length. This lengthscale generalizes the notion of a mean free path beyond weak coupling, and allows finite size regions to independently thermalize. Using the eigenstate thermalization hypothesis, we show that thermal fluctuations in finite size 'fireballs' can produce states that violate the averaged null energy condition if the thermalization length is too short or if the shear viscosity is too large. These bounds become very weak with a large number N of degrees of freedom but can constrain real-world systems, such as the quark-gluon plasma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据