4.6 Article

Regression model for stabilization energies associated with anion ordering in perovskite-type oxynitrides

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 36, 期 -, 页码 7-14

出版社

ELSEVIER
DOI: 10.1016/j.jechem.2019.01.012

关键词

Machine learning; Total energy; Bandgap; Local anion ordering; Density functional theory

资金

  1. Japan Society for the Promotion of Science (JSPS) [16H02417, 15H05494]
  2. MEXT

向作者/读者索取更多资源

Certain perovskite-type oxynitrides have bandgaps suitable for renewable hydrogen production via photocatalytic and photoelectrochemical water splitting under visible light. Understanding the ordering of oxide and nitride anions in these materials is important because this ordering affects their semiconductor properties. However, the numerous possible orderings complicate systematic analyses based on density functional theory (DFT) calculations using defined elemental arrangements. This work shows that anion ordering in large-scale supercells within perovskite-type oxynitrides can be rapidly predicted based on machine learning, using BaNbO2N (capable of oxidizing water under irradiation up to 740 nm) as an example. Machine learning allows the calculation of the total energy of BaNbO2N directly from randomly selected initial atomic placements without costly structural optimization, thus reducing the computational cost by more than 99.99%. Combined with the Metropolis Monte Carlo method, machine learning permits exploration of the stable anion orderings of large supercells without costly DFT calculations. This work therefore demonstrates a means of predicting the properties of functional materials having complex compositions based on the most realistic elemental arrangements in conjunction with reasonable computational loads. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据