4.7 Article

Fitness Cost of Transgenic cry1Ab/c Rice Under Saline-Alkaline Soil Condition

期刊

FRONTIERS IN PLANT SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2018.01552

关键词

biosafety; Bt; Cry1Ab/c protein; fitness cost; saline-alkaline soil; target insect; transgenic rice

资金

  1. National Special Transgenic Project of China [2016ZX0812005]
  2. National Natural Science Foundation of China [31370544]

向作者/读者索取更多资源

The environmental release and biosafety of transgenic Bt crops have attracted global attention. China has a large area of saline-alkali land, which is ideal for large-scale production of Bt transgenic rice. Therefore an understanding of the fitness of Bt transgenic rice in saline-alkaline soils and the ability to predict its long-term environmental effects are important for the future sustainable use of these crops. In the present study, we aimed to evaluate the fitness of cry1Ab/c transgenic rice in both farmland and natural ecosystems. Transgenic cry1Ab/c rice Huahui1, for which a national biosafety certificate was obtained, was grown on normal farmland and saline-alkaline soils in a glass greenhouse. The expression pattern of exogenous Cry1Ab/c protein, and vegetative and reproductive fitness of rice were assessed. The expression of the exogenous Cry1Ab/c protein in the transgenic rice grown on saline-alkaline soil was lower than that in the strain grown on farmland soil. Under both the soil conditions, vegetative growth abilities, as evaluated by tiller number and biomass, and reproductive growth abilities, as measured by filled grain number and filled grain weight per plant, showed a significantly higher fitness cost for Huahui1 than that for the parental rice Minghui63 grown under the same soil conditions. In saline-alkaline soil, the fitness cost of Huahui1 was moderately higher than that of Minghui63. Therefore, the ecological risk of cry1Ab/c transgenic rice is not expected to be higher than that of parental rice Minghui63 if the former escapes into natural saline-alkaline soil. The results of the present study provide a scientific basis to improve environmental safety assessment of the insect-resistant transgenic rice strain Huahui1 before commercialization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据