4.7 Review

Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability

期刊

FRONTIERS IN PLANT SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2018.01732

关键词

mutagenesis; genome engineering; allele dose effect; Populus; biallelic; monoallelic; knockout

资金

  1. National Institute of Food and Agriculture in the Department of Agriculture [2015-67013-22812]
  2. National Science Foundation [IOS-1546867]
  3. Center for Bioenergy Innovation
  4. Department of Energy's Research Center - Office of Biological and Environmental Research in the DOE Office of Science
  5. Fundamental Research Funds for the Central Universities from China [BLYJ201603]

向作者/读者索取更多资源

The CRISPR technology continues to diversify with a broadening array of applications that touch all kingdoms of life. The simplicity, versatility and species-independent nature of the CRISPR system offers researchers a previously unattainable level of precision and control over genomic modifications. Successful applications in forest, fruit and nut trees have demonstrated the efficacy of CRISPR technology at generating null mutations in the first generation. This eliminates the lengthy process of multigenerational crosses to obtain homozygous knockouts (KO). The high degree of genome heterozygosity in outcrossing trees is both a challenge and an opportunity for genome editing: a challenge because sequence polymorphisms at the target site can render CRISPR editing ineffective; yet an opportunity because the power and specificity of CRISPR can be harnessed for allele-specific editing. Examination of CRISPR/Cas9-induced mutational profiles from published tree studies reveals the potential involvement of multiple DNA repair pathways, suggesting that the influence of sequence context at or near the target sites can define mutagenesis outcomes. For commercial production of elite trees that rely on vegetative propagation, available data suggest an excellent outlook for stable CRISPR-induced mutations and associated phenotypes over multiple clonal generations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据