4.5 Article

Effect of silicon on grain yield of rice under cadmium-stress

期刊

ACTA PHYSIOLOGIAE PLANTARUM
卷 38, 期 7, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11738-016-2177-8

关键词

Rice (Oryza sativa); Silicon; Cadmium; Lsi1; Photosynthesis; Grain yield

资金

  1. National Natural Science Foundation of China [31271670, 31300336]
  2. National Research Foundation for the Doctoral Program of Higher Education of China [20133515130001]
  3. Fujian-Taiwan Joint Innovative Center for germplasm resource and cultivation of crop (Fujian Program) [75]

向作者/读者索取更多资源

Many publications indicated various beneficial effects of the addition of silicon (Si) in soil on the physiology of rice plants. The gene responsible for the Si-uptake in rice, low Si-influx 1 (Lsi1), was identified and cloned for this study. The photosynthetic rate (Pn), grain yield, and resistance to Cadmium (Cd)-stress of the wild-type (WT) and Lsi1-transgenic Lemont rice lines under Cd-stress were examined in an attempt to better understand the mechanism associated with the Si-addition, Cd-stress, and rice physiology. Si-fertilization significantly reduced the Cd-content in rice under Cd-stress. The effect was most significant in the Lsi1-over-expression transgenic Lemont rice (Lsi1-OE line) under high Cd-stress. Conversely, Cd in soil lowered the Si-uptake of the plants indicating a significant interaction between the two elements. During the grain-filling period, Cd-stress greatly reduced the chlorophyll content and Pn of the rice resulting in a diminished grain output. However, Lsi1-OE line with a higher chlorophyll content and Pn than either WT or Lsi1-RNAi transgenic Lemont rice (Lsi1-RNAi line) maintained a high photo-assimilate transportation for high yield potential. At harvest, Lsi1-OE line contained more Si and less Cd than WT, whereas the Lsi1-RNAi line showed an opposite result. In general, Cd-stress reduced, while Si-fertilization significantly increased, the grain yield on rice. However, no significant difference on the grain yields existed between WT and Lsi1-RNAi line. This might be due to a compensation effect generated by Lsi1-RNAi line. It appeared that Si in the soil, as well as the enhancing or inhibiting Lsi1 expression and the resistance to Cd-toxicity of the plants, could significantly affect the rice yield making alternations on these factors a plausible approach for production improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据