4.6 Article

Sustainable and Affordable Composites Built Using Microstructures Performing Better than Nanostructures for Arsenic Removal

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 7, 期 3, 页码 3222-3233

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.8b05157

关键词

Arsenic; Cellulose; Nanocomposite; Ferrihydrite; Adsorption; Sustainability metrics

向作者/读者索取更多资源

Arsenicosis was recognized over 104 years ago. Elevated arsenic (As) concentrations in water is faced by about 200 million people worldwide and has become one of the biggest challenges in the context of water purification. Providing sustainable and affordable solutions to tackle this menace is a need of the hour. Adsorption on advanced materials is increasingly being recognized as a potential solution. Here, we report various functionalized microcellulose-reinforced 2-line ferrihydrite composites which show outstanding As(III) and As(V) adsorption capacities. Green synthesis of the composite yields granular media with high mechanical strength which show faster adsorption kinetics in a wide pH range, irrespective of the presence of other interfering ions in water. The composites and their interaction with As(III) and As(V) were studied by XRD, HRTEM, SEM, XPS, Raman, TG, and IR spectroscopy. Performance of the media in the form of cartridge reaffirms its utility for point-of-use water purification. We show that cellulose microstructures are more efficient than corresponding nanostructures for the purpose of arsenic remediation. We have also performed an evaluation of several sustainability metrics to understand the greenness of the composite and its manufacturing process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据