4.7 Article

Developing an Ensemble Precipitation Algorithm from Satellite Products and Its Topographical and Seasonal Evaluations Over Pakistan

期刊

REMOTE SENSING
卷 10, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/rs10111835

关键词

satellite precipitation; Global Precipitation Measurement (GPM); IMERG; TRMM-TMPA; Ensemble Precipitation (EP) algorithm; topographical and seasonal evaluation

资金

  1. National Natural Science Foundation of China [51479090]

向作者/读者索取更多资源

Accurate estimation of precipitation is critical for hydrological, meteorological, and climate models. This study evaluates the performance of satellite-based precipitation products (SPPs) including Global Precipitation Measurement (GPM)-based Integrated Multi-Satellite Retrievals for GPM (IMERG), Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA 3B43-v7), Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN), and PERSIANN-CDR (Climate Data Record), over Pakistan based on Surface Precipitation Gauges (SPGs) at spatial and temporal scales. A novel ensemble precipitation (EP) algorithm is developed by selecting the two best SPPs using the Paired Sample t-test and Principal Component Analysis (PCA). The SPPs and EP algorithm are evaluated over five climate zones (ranging from glacial Zone-A to hyper-arid Zone-E) based on six statistical metrics. The result indicated that IMERG outperformed all other SPPs, but still has considerable overestimation in the highly elevated zones (+20.93 mm/month in Zone-A) and relatively small underestimation in the arid zone (-2.85 mm/month in Zone-E). Based on the seasonal evaluation, IMERG and TMPA overestimated precipitation during pre-monsoon and monsoon seasons while underestimating precipitation during the post-monsoon and winter seasons. However, the developed EP algorithm significantly reduced the errors both on spatial and temporal scales. The only limitation of the EP algorithm is relatively poor performance at high elevation as compared to low elevations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据