4.5 Article

Integrating evidence, models and maps to enhance Chagas disease vector surveillance

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 12, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0006883

关键词

-

资金

  1. National Institutes of Health [5R01 AI101229]
  2. University of Pennsylvania Center for Global Health
  3. Center for Clinical Epidemiology Biostatistics

向作者/读者索取更多资源

Background Until recently, the Chagas disease vector, Triatoma infestans, was widespread in Arequipa, Peru , but as a result of a decades-long campaign in which over 70,000 houses were treated with insecticides, infestation prevalence is now greatly reduced. To monitor for T. infestans resurgence, the city is currently in a surveillance phase in which a sample of houses is selected for inspection each year. Despite extensive data from the control campaign that could be used to inform surveillance, the selection of houses to inspect is often carried out haphazardly or by convenience. Therefore, we asked, how can we enhance efforts toward preventing T. infestans resurgence by creating the opportunity for vector surveillance to be informed by data? Methodology/principal findings To this end, we developed a mobile app that provides vector infestation risk maps generated with data from the control campaign run in a predictive model. The app is intended to enhance vector surveillance activities by giving inspectors the opportunity to incorporate the infestation risk information into their surveillance activities, but it does not dictate which houses to surveil. Therefore, a critical question becomes, will inspectors use the risk information? To answer this question, we ran a pilot study in which we compared surveillance using the app to the current practice (paper maps). We hypothesized that inspectors would use the risk information provided by the app, as measured by the frequency of higher risk houses visited, and qualitative analyses of inspector movement patterns in the field. We also compared the efficiency of both mediums to identify factors that might discourage risk information use. Over the course of ten days (five with each medium), 1,081 houses were visited using the paper maps, of which 366 (34%) were inspected, while 1,038 houses were visited using the app, with 401 (39%) inspected. Five out of eight inspectors (62.5%) visited more higher risk houses when using the app (Fisher's exact test, p < 0.001). Among all inspectors, there was an upward shift in proportional visits to higher risk houses when using the app (Mantel-Haenszel test, common odds ratio (OR) = 2.42, 95% CI 2.00-2.92), and in a second analysis using generalized linear mixed models, app use increased the odds of visiting a higher risk house 2.73-fold (95% CI 2.24-3.32), suggesting that the risk information provided by the app was used by most inspectors. Qualitative analyses of inspector movement revealed indications of risk information use in seven out of eight (87.5%) inspectors. There was no difference between the app and paper maps in the number of houses visited (paired t-test, p = 0.67) or inspected (p = 0.17), suggesting that app use did not reduce surveillance efficiency. Conclusions/significance Without staying vigilant to remaining and re-emerging vector foci following a vector control campaign, disease transmission eventually returns and progress achieved is reversed. Our results suggest that, when provided the opportunity, most inspectors will use risk information to direct their surveillance activities, at least over the short term. The study is an initial, but key, step toward evidence-based vector surveillance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据