4.6 Article

Determinants of drug-target interactions at the single cell level

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 14, 期 12, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1006601

关键词

-

资金

  1. American Heart Association
  2. National Institutes of Health [HL061795, HL119145, HG007690, GM107618]

向作者/读者索取更多资源

The physiochemical determinants of drug-target interactions in the microenvironment of the cell are complex and generally not defined by simple diffusion and intrinsic chemical reactivity. Non-specific interactions of drugs and macromolecules in cells are rarely considered formally in assessing pharmacodynamics. Here, we demonstrate that non-specific interactions lead to very slow incorporation kinetics of DNA binding drugs. We observe a rate of drug incorporation in cell nuclei three orders of magnitude slower than in vitro due to anomalous drug diffusion within cells. This slow diffusion, however, has an advantageous consequence: it leads to virtually irreversible binding of the drug to specific DNA targets in cells. We show that non-specific interactions drive slow drug diffusion manifesting as slow reaction front propagation. We study the effect of non-specific interactions in different cellular compartments by permeabilization of plasma and nuclear membranes in order to pinpoint differential compartment effects on variability in intracellular drug kinetics. These results provide the basis for a comprehensive model of the determinants of intracellular diffusion of small-molecule drugs, their target-seeking trajectories, and the consequences of these processes on the apparent kinetics of drug-target interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据