4.7 Article

Pattern Recognition Techniques for Boson Sampling Validation

期刊

PHYSICAL REVIEW X
卷 9, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.9.011013

关键词

Computational Physics; Photonics; Quantum Information

资金

  1. ERC-Starting Grant 3D-QUEST (3D-Quantum Integrated Optical Simulation) [307783]
  2. H2020-FETPROACT-2014 Grant QUCHIP (Quantum Simulation on a Photonic Chip) [641039]
  3. European Research Council (ERC) Advanced Grant CAPABLE (Composite integrated photonic platform by femtosecond laser micromachining) [742745]

向作者/读者索取更多资源

The difficulty of validating large-scale quantum devices, such as boson samplers, poses a major challenge for any research program that aims to show quantum advantages over classical hardware. Towards this aim, we propose a novel data-driven approach, wherein models are trained to identify common pathologies using unsupervised machine-learning methods. We illustrate this idea by training a classifier that exploits K-means clustering to distinguish between boson samplers that use indistinguishable photons from those that do not. We tune the model on numerical simulations of small-scale boson samplers and then validate the pattern-recognition technique on larger numerical simulations as well as on photonic chips in both traditional boson-sampling and scatter-shot experiments. The effectiveness of such a method relies on particle-type-dependent internal correlations present in the output distributions. This approach performs substantially better on the test data than previous methods and underscores the ability to further generalize its operation beyond the scope of the examples that it was trained on.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据