4.3 Article

PARS: Using Augmented 360-Degree Panoramas of Reality for Construction Safety Training

出版社

MDPI
DOI: 10.3390/ijerph15112452

关键词

360-degree panoramas; augmented panoramas of reality; hazard recognition; construction safety training; virtual reality

资金

  1. CPWR-The Center for Construction Research and Training from the National Institute of Occupational Safety and Health (NIOSH) [U60-OH009762]
  2. DCP Research Seed Grant and Equipment Initiatives
  3. NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH [U60OH009762] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Improving the hazard-identification skills of construction workers is a vital step towards preventing accidents in the increasingly complex working conditions of construction jobsites. Training the construction workforce to recognize hazards therefore plays a central role in preparing workers to actively understand safety-related risks and make assertive safety decisions. Considering the inadequacies of traditional safety-training methods (e.g., passive lectures, videos, demonstrations), researchers have employed advanced visualization techniques such as virtual reality technologies to enable users to actively improve their hazard-identification skills in a safe and controlled environment. However, current virtual reality techniques sacrifice realism and demand high computational costs to reproduce real environments. Augmented 360-degree panoramas of reality offers an innovative alternative that creates low-cost, simple-to-capture, true-to-reality representations of the actual construction jobsite within which trainees may practice identifying hazards. This proof-of-concept study developed and evaluated a platform using augmented 360-degree panoramas of reality (PARS) for safety-training applications to enhance trainees' hazard-identification skills for four types of sample hazards. Thirty subjects participated in a usability test that evaluated the PARS training platform and its augmented 360-degree images captured from real construction jobsites. The usability reviews demonstrate that the trainees found the platform and augmentations advantageously to learning hazard identification. The results of this study will foreseeably help researchers in developing engaging training platforms to improve the hazard-identification skills of workers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据