4.3 Article

Genetic Basis of Variation in Heat and Ethanol Tolerance in Saccharomyces cerevisiae

期刊

G3-GENES GENOMES GENETICS
卷 9, 期 1, 页码 179-188

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/g3.118.200566

关键词

quantitative trait; mapping; yeast; natural variation

资金

  1. NIH [GM080669]

向作者/读者索取更多资源

Saccharomyces cerevisiae has the capability of fermenting sugar to produce concentrations of ethanol that are toxic to most organisms. Other Saccharomyces species also have a strong fermentative capacity, but some are specialized to low temperatures, whereas S. cerevisiae is the most thermotolerant. Although S. cerevisiae has been extensively used to study the genetic basis of ethanol tolerance, much less is known about temperature dependent ethanol tolerance. In this study, we examined the genetic basis of ethanol tolerance at high temperature among strains of S. cerevisiae. We identified two amino acid polymorphisms in SEC24 that cause strong sensitivity to ethanol at high temperature and more limited sensitivity to temperature in the absence of ethanol. We also identified a single amino acid polymorphism in PSD1 that causes sensitivity to high temperature in a strain dependent fashion. The genes we identified provide further insight into genetic variation in ethanol and temperature tolerance and the interdependent nature of these two traits in S. cerevisiae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据