4.7 Article

Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCe-dependent activation of TRPV1

期刊

ACTA PHARMACOLOGICA SINICA
卷 37, 期 9, 页码 1166-1177

出版社

ACTA PHARMACOLOGICA SINICA
DOI: 10.1038/aps.2016.58

关键词

quercetin; paclitaxel; RBL-2H3 cells; heat hyperalgesia; mechanical allodynia; spinal cord; dorsal root ganglion; histamine; PKCe; TRPV1

资金

  1. National Natural Science Foundation of China [81072976, 81173623]
  2. QingLan Project of Jiangsu Province

向作者/读者索取更多资源

Aim: Severe painful sensory neuropathy often occurs during paclitaxel chemotherapy. Since paclitaxel can activate mast cell and basophils, whereas quercetin, a polyphenolic flavonoid contained in various plants, which can specifically inhibit histamine release as a mast cell stabilizer. In this study we explore whether quercetin could ameliorate paclitaxel-induced neuropathic pain and elucidated the underlying mechanisms. Methods: Quercetin inhibition on histamine release was validated in vitro by detecting histamine release from rat basophilic leukemia (RBL-2H3) cells stimulated with paclitaxel (10 mu mol/L). In the in vivo experiments, rats and mice received quercetin (20, 40 mg.kg(-1).d(-1)) for 40 and 12 d, respectively. Meanwhile, the animals were injected with paclitaxel (2 mg/kg, ip) four times on d 1, 3, 5 and 7. Heat hyperalgesia and mechanical allodynia were evaluated at the different time points. The animals were euthanized and spinal cords and dorsal root ganglions were harvested for analyzing PKCe and TRPV1 expression levels. The plasma histamine levels were assessed in rats on d 31. Results: Pretreatment with quercetin (3, 10, 30 mu mol/L) dose-dependently inhibited excessive histamine release from paclitaxel-stimulated RBL-2H3 cells in vitro, and quercetin administration significantly suppressed the high plasma histamine levels in paclitaxel-treated rats. Quercetin administration dose-dependently raised the thresholds for heat hyperalgesia and mechanical allodynia in paclitaxel-treated rats and mice. Furthermore, quercetin administration dose-dependently suppressed the increased expression levels of PKCe and TRPV1 in the spinal cords and DRGs of paclitaxel-treated rats and mice. Moreover, quercetin administration may inhibited the translocation of PKCe from the cytoplasm to the membrane in the spinal cord and DRG of paclitaxel-treated rats. Conclusion: Our results reveal the underlying mechanisms of paclitaxel-induced peripheral neuropathy and demonstrate the therapeutic potential of quercetin for treating this side effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据