4.4 Article

Contact splitting in dry adhesion and friction: reducing the influence of roughness

期刊

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
卷 10, 期 -, 页码 1-8

出版社

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.10.1

关键词

biomimetics; contact splitting; gecko adhesion; surfaces; tribology

资金

  1. Georgia Institute of Technology

向作者/读者索取更多资源

Splitting a large contact area into finer, sub-contact areas is thought to result in higher adaptability to rough surfaces, stronger adhesion, and a more uniform stress distribution with higher tolerance to defects. However, while it is widely believed that contact splitting helps to mitigate the negative effects of roughness on adhesion- and friction-based attachment, no decisive experimental validation of this hypothesis has been performed so far for thin-film-based adhesives. To this end, we report on the behavior of original and split, wall-shaped adhesive microstructures on different surfaces ranging across four orders of magnitude in roughness. Our results clearly demonstrate that the adhesion- and friction-driven attachment of the wall-shaped microstructure degrades, regardless of the surface waviness, when the surface roughness increases. Second, splitting the wall-shaped microstructure indeed helps to mitigate the negative effect of the increasing surface unevenness by allowing the split microstructure to adapt more easily to the surface waviness and by reducing the effective average peeling angle. These findings can be used to guide the development of biomimetic shear-actuated adhesives suitable for operation not only on smooth but also on rough surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据