4.8 Article

Harvesting Electronic Waste for the Development of Highly Efficient Eco-Design Electrodes for Electrocatalytic Water Splitting

期刊

ADVANCED ENERGY MATERIALS
卷 8, 期 34, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201802615

关键词

alkaline electrolyzer; e-wastes; overall water splitting; scrap copper wires

资金

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea [20153030031610]

向作者/读者索取更多资源

Disposal of e-wastes in prescribed landfills poses serious environmental concerns at both a local and global scale. Recovering valuable materials from e-wastes and utilizing them for development of eco-design devices guides one to a more productive way of managing wastes. Recycled copper is capable of retaining its intrinsic properties and can be reused with same expectation of performances; capitalizing on this fact, herein, it is attempted to utilize copper from e-waste as an economically viable catalytic substrate for overall water splitting. Upon deposition of amorphous nickel cobalt phosphide films, the scrap copper wires are highly efficient for catalyzing hydrogen and oxygen evolution reaction at low overpotential ((10)eta-(HER) = 178 mV, (10)eta-(OER) = 220 mV), and considerably promote water catalysis at 1.59 V@ 10 mA cm(-2). Moreover, the electrodes demonstrate long-term stability in alkaline electrolyte that can potentially be employed for large-scale electrolyzer application. The proposed electrode architecture, by the explicit growth of bimetallic phosphide on highly conductive Cu substrate, facilitates fast electron transport and promises a minimum contact resistance between electrocatalyst and current collector. This work paves the way for development of environmentally sound electrode materials from e-waste that can be exercised for a myriad of other clean energy reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据