4.8 Article

Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-06980-x

关键词

-

资金

  1. Danish National Research Foundation (Center for Materials Crystallography) [DNRF93]
  2. Danish Center for Synchrotron and Neutron Research (Danscatt)
  3. Danish Center for Scientific Computing

向作者/读者索取更多资源

The Mg3Sb2 structure is currently being intensely scrutinized due to its outstanding thermoelectric properties. Usually, it is described as a layered Zintl phase with a clear distinction between covalent [Mg2Sb2](2)(-) layers and ionic Mg2+ layers. Based on the quantitative chemical bonding analysis, we unravel instead that Mg3Sb2 exhibits a nearly isotropic three-dimensional bonding network with the interlayer and intralayer bonds being mostly ionic and surprisingly similar, which results in the nearly isotropic structural and thermal properties. The isotropic three-dimensional bonding network is found to be broadly applicable to many Mg-containing compounds with the CaAl2Si2-type structure. Intriguingly, a parameter based on the electron density can be used as an indicator measuring the anisotropy of lattice thermal conductivity in Mg3Sb2-related structures. This work extends our understanding of structure and properties based on chemical bonding analysis, and it will guide the search for and design of materials with tailored anisotropic properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据