4.8 Article

Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-07422-4

关键词

-

资金

  1. National Natural Science Foundation of China [51732011, 21431006, 21761132008, 81788101, 11227901]
  2. Foundation for Innovative Research Groups of the National Natural Science Foundation of China [21521001]
  3. Key Research Program of Frontier Sciences, CAS [QYZDJ-SSW-SLH036]
  4. National Basic Research Program of China [2014CB931800]
  5. Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS [2015HSC-UE007]
  6. Anhui Initiative in Quantum Information Technologies [AHY050000]
  7. Ontario Research Fund - Research Excellence Program
  8. Natural Sciences and Engineering Research Council (NSERC) of Canada
  9. Southern Ontario Smart Computing Innovation Platform (SOSCIP)

向作者/读者索取更多资源

Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates - features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of precursors to grow, alternatingly, the quantum dots and nanowires - something not readily implemented in conventional flask-based solution chemistry. Here we report pulsed axial epitaxy, a growth mode that enables the stacking of multiple CdS quantum dots in ZnS nanowires. The approach relies on the energy difference of incorporating these semiconductor atoms into the host catalyst, which determines the nucleation sequence at the catalyst-nanowire interface. This flexible synthetic strategy allows precise modulation of quantum dot size, number, spacing, and crystal phase. The facet-selective passivation of quantum dots in nanowires opens a pathway to photocatalyst engineering: we report photocatalysts that exhibit an order-of-magnitude higher photocatalytic hydrogen evolution rates than do plain CdS quantum dots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据