4.8 Article

Structural delineation of potent transmission- blocking epitope I on malaria antigen Pfs48/45

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-06742-9

关键词

-

资金

  1. Bill & Melinda Gates Foundation [OPP1108403]
  2. Intramural Research Program of the NIAID, NIH [TB31F]
  3. Canada Foundation for Innovation
  4. Natural Sciences and Engineering Research Council of Canada
  5. University of Saskatchewan
  6. Government of Saskatchewan
  7. Western Economic Diversification Canada
  8. National Research Council Canada
  9. Canadian Institutes of Health Research
  10. Canada Research Chairs program

向作者/读者索取更多资源

Interventions that can block the transmission of malaria-causing Plasmodium falciparum (Pf) between the human host and Anopheles vector have the potential to reduce the incidence of malaria. Pfs48/45 is a gametocyte surface protein critical for parasite development and transmission, and its targeting by monoclonal antibody (mAb) 85RF45.1 leads to the potent reduction of parasite transmission. Here, we reveal how the Pfs48/45 6C domain adopts a (SAG1)-related-sequence (SRS) fold. We structurally delineate potent epitope I and show how mAb 85RF45.1 recognizes an electronegative surface with nanomolar affinity. Analysis of Pfs48/45 sequences reveals that polymorphisms are rare for residues involved at the binding interface. Humanization of rat-derived mAb 85RF45.1 conserved the mode of recognition and activity of the parental antibody, while also improving its thermostability. Our work has implications for the development of transmission-blocking interventions, both through improving vaccine designs and the testing of passive delivery of mAbs in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据