4.5 Review

Emerging critical roles of Fe-S clusters in DNA replication and repair

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbamcr.2015.01.018

关键词

Fe-S cluster; DNA repair; DNA replication; DNA charge transfer communication; Genome integrity; Cancer and degenerative disease

资金

  1. National Institutes of Health [R01 CA112093]

向作者/读者索取更多资源

Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life - the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据