4.6 Article

Performance and wake comparison of horizontal and vertical axis wind turbines under varying surface roughness conditions

期刊

WIND ENERGY
卷 22, 期 4, 页码 458-472

出版社

WILEY
DOI: 10.1002/we.2299

关键词

actuator line model (ALM); atmospheric boundary layer (ABL); dynamic stall model (DSM); horizontal axis wind turbines (HAWTs); large eddy simulation (LES); vertical axis wind turbines (VAWTs)

向作者/读者索取更多资源

A numerical study of both a horizontal axis wind turbine (HAWT) and a vertical axis wind turbine (VAWT) with similar size and power rating is presented. These large scale turbines have been tested when operating stand-alone at their optimal tip speed ratio (TSR) within a neutrally stratified atmospheric boundary layer (ABL). The impact of three different surface roughness lengths on the turbine performance is studied for the both turbines. The turbines performance, the response to the variation in the surface roughness of terrain, and the most relevant phenomena involved on the resulting wake were investigated. The main goal was to evaluate the differences and similarities of these two different types of turbine when they operate under the same atmospheric flow conditions. An actuator line model (ALM) was used together with the large eddy simulation (LES) approach for predicting wake effects, and it was implemented using the open-source computational fluid dynamics (CFD) library OpenFOAM to solve the governing equations and to compute the resulting flow fields. This model was first validated using wind tunnel measurements of power coefficients and wake of interacting HAWTs, and then employed to study the wake structure of both full scale turbines. A preliminary study test comparing the forces on a VAWT blades against measurements was also investigated. These obtained results showed a better performance and shorter wake (faster recovery) for an HAWT compared with a VAWT for the same atmospheric conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据