4.7 Article

GeoFlood: Large-Scale Flood Inundation Mapping Based on High-Resolution Terrain Analysis

期刊

WATER RESOURCES RESEARCH
卷 54, 期 12, 页码 10013-10033

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018WR023457

关键词

flooding; lidar; HAND; rating curves

资金

  1. Texas Division of Emergency Management [26-3215-2275]
  2. Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI)
  3. National Water Center at the National Oceanic and Atmospheric Administration (NOAA)

向作者/读者索取更多资源

Recent floods from intense storms in the southern United States and the unusually active 2017 Atlantic hurricane season have highlighted the need for real-time flood inundation mapping using high-resolution topography. High-resolution topographic data derived from lidar technology reveal unprecedented topographic details and are increasingly available, providing extremely valuable information for improving inundation mapping accuracy. The enrichment of terrain details from these data sets, however, also brings challenges to the application of many classic approaches designed for lower-resolution data. Advanced methods need to be developed to better use lidar-derived terrain data for inundation mapping. We present a new workflow, GeoFlood, for flood inundation mapping using high-resolution terrain inputs that is simple and computationally efficient, thus serving the needs of emergency responders to rapidly identify possibly flooded locations. First, GeoNet, a method for automatic channel network extraction from high-resolution topographic data, is modified to produce a low-density, high-fidelity river network. Then, a Height Above Nearest Drainage (HAND) raster is computed to quantify the elevation difference between each land surface cell and the stream bed cell to which it drains, using the network extracted from high-resolution terrain data. This HAND raster is then used to compute reach-average channel hydraulic parameters and synthetic stage-discharge rating curves. Inundation maps are generated from the HAND raster by obtaining a water depth for a given flood discharge from the synthetic rating curve. We evaluate our approach by applying it in the Onion Creek Watershed in Central Texas, comparing the inundation extent results to Federal Emergency Management Agency 100-yr floodplains obtained with detailed local hydraulic studies. We show that the inundation extent produced by GeoFlood overlaps with 60%similar to 90% of the Federal Emergency Management Agency floodplain coverage demonstrating that it is able to capture the general inundation patterns and shows significant potential for informing real-time flood disaster preparedness and response. Plain Language Summary Simple and computationally efficient flood inundation mapping methods are needed to take advantage of increasingly available high-resolution topography data. In this work, we present a new approach, called GeoFlood, for flood inundation mapping using high-resolution topographic data. This approach combines GeoNet, an advanced method for high-resolution terrain data analysis, and the Height Above Nearest Drainage. GeoFlood can rapidly convert real-time forecasted river flow conditions to corresponding flood maps. A case study in central Texas demonstrated that the flood maps generated with our approach capture the majority of the inundated extent reported by detailed Federal Emergency Management Agency flood studies. Our results show that GeoFlood is a valuable solution for rapid inundation mapping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据