4.7 Article

Thermal Attenuation and Lag Time in Fractured Rock: Theory and Field Measurements From Joint Heat and Solute Tracer Tests

期刊

WATER RESOURCES RESEARCH
卷 54, 期 12, 页码 10053-10075

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2018WR023199

关键词

-

资金

  1. ANR project Stock en Socle [ANR-13-0009]
  2. French network of hydrogeological observatories H+
  3. ANR project EQUIPEX CRITEX [ANR-11-EQPX-0011]
  4. ECOSNord project [C17U02]
  5. UNESCO project [IGCP636]

向作者/读者索取更多资源

The modeling and prediction of heat transfer in fractured media is particularly challenging as hydraulic and transport properties depend on a multiscale structure that is difficult to resolve. In addition to advection and dispersion, heat transfer is also impacted by thermal attenuation and lag time, which results from fracture-matrix thermal exchanges. Here we derive analytical expressions for thermal lag time and attenuation coefficient in fractured media, which quantify the effect of fracture geometry on these key factors. We use the developed expressions to interpret the results of single-well thermal and solute tracer tests performed in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). Thermal breakthrough was monitored with fiber-optic distributed temperature sensing (FO-DTS), which allows temperature monitoring at high spatial and temporal resolution. The observed thermal response departs from the conventional parallel plate fracture model but is consistent with a channel model representing highly channelized fracture flow. These findings, which point to a strong reduction of fracture-matrix exchange by flow channeling, show the impact of fracture geometry on heat recovery in geothermal systems. This study also highlights the advantages to conduct both thermal and solute tracer tests to infer fracture aperture and geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据