4.5 Article

Cytotoxicity and global transcriptional responses induced by zinc oxide nanoparticles NM 110 in PMA-differentiated THP-1 cells

期刊

TOXICOLOGY LETTERS
卷 308, 期 -, 页码 65-73

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2018.11.003

关键词

Zinc oxide nanoparticle; NM110; PMA-differentiated THP-1 cells; Transcriptome; Cytotoxicity; Metallothionein

资金

  1. Smartnanotox frame, a European Union's Horizon 2020 research and innovation program [686098]

向作者/读者索取更多资源

Despite a wide production and use of zinc oxide nanoparticles (ZnONP), their toxicological study is only of limited number and their impact at a molecular level is seldom addressed. Thus, we have used, as a model, zinc oxide nanoparticle NM110 (ZnO110NP) exposure to PMA-differentiated THP-1 macrophages. The cell viability was studied at the cellular level using WST-1, LDH and Alamar Blue (R) assays, as well as at the molecular level by transcriptomic analysis. Exposure of cells to ZnO110NP for 24 h decreased their viability in a dose-dependent manner with mean inhibitory concentrations (IC50) of 8.1 mu g/mL. Transcriptomic study of cells exposed to two concentrations of ZnO110NP: IC50 and a quarter of it (IC50/4) for 4 h showed that the expressions of genes involved in metal metabolism are perturbed. In addition, expression of genes acting in transcription regulation and DNA binding, as well as clusters of genes related to protein synthesis and structure were altered. It has to be noted that the expressions of metallothioneins genes (MT1, MT2) and genes of heat-shock proteins genes (HSP) were strongly upregulated for both conditions. These genes might be used as an early marker of exposure to ZnONP. On the contrary, at IC50 exposure, modifications of gene expression involved in inflammation, apoptosis and mitochondrial suffering were noted indicating a less specific cellular response. Overall, this study brings a resource of transcriptional data for ZnONP toxicity for further mechanistic studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据