4.2 Article

Formation of Neoarteries with Optimal Remodeling Using Rapidly Degrading Textile Vascular Grafts

期刊

TISSUE ENGINEERING PART A
卷 25, 期 7-8, 页码 632-641

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2018.0167

关键词

tissue engineered vascular grafts; neoartery; rapidly degrading; textile

向作者/读者索取更多资源

Tissue-engineered vascular grafts (TEVGs) have shown significant promise; however, progression toward clinical application has been limited by the use of slow degrading polymers, which cause prolonged inflammatory responses and alter remodeling. Thus, a significant need persists to develop a vascular graft that is easily implanted, withstands the mechanical stresses of arterial flow, and quickly degrades after remodeling. We utilized textile technology to braid a TEVG comprised exclusively of rapidly degrading poly(glycolic acid). Implantation in an in vivo rat abdominal aorta model demonstrated near complete degradation of the initial TEVG scaffold by 6 months and formation of a neoartery with continuous endothelium, contractile smooth muscle cells, extracellular matrix deposition, and mechanical properties comparable to native aorta. Furthermore, coating of the braided poly(glycolic acid) TEVG with poly(glycerol sebacate) led to decreased calcification in the resultant neoartery. These novel results warrant further studies and may aid in the development of the ideal degradable vascular graft. Impact Statement We utilized innovative textile technology to create tissue-engineered vascular grafts (TEVGs) comprised exclusively of rapidly degrading material poly(glycolic acid). Our new technology led to robust neotissue formation in the TEVGs, especially extracellular matrix formation, such as elastin. In addition, the rapid degradation of the polymer significantly reduced complications, such as stenosis or calcification, as seen with the use of slow degrading polymers in the majority of previous studies for aortic small diameter TEVGs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据