4.7 Review

Accelerating crop genetic gains with genomic selection

期刊

THEORETICAL AND APPLIED GENETICS
卷 132, 期 3, 页码 669-686

出版社

SPRINGER
DOI: 10.1007/s00122-018-3270-8

关键词

-

向作者/读者索取更多资源

Key messageGenomic prediction based on additive genetic effects can accelerate genetic gain. There are opportunities for further improvement by including non-additive effects that access untapped sources of genetic diversity.AbstractSeveral studies have reported a worrying gap between the projected global future demand for plant-based products and the current annual rates of production increase, indicating that enhancing the rate of genetic gain might be critical for future food security. Therefore, new breeding technologies and strategies are required to significantly boost genetic improvement of future crop cultivars. Genomic selection (GS) has delivered considerable genetic gain in animal breeding and is becoming an essential component of many modern plant breeding programmes as well. In this paper, we review the lessons learned from implementing GS in livestock and the impact of GS on crop breeding, and discuss important features for the success of GS under different breeding scenarios. We highlight major challenges associated with GS including rapid genotyping, phenotyping, genotype-by-environment interaction and non-additivity and give examples for opportunities to overcome these issues. Finally, the potential of combining GS with other modern technologies in order to maximise the rate of crop genetic improvement is discussed, including the potential of increasing prediction accuracy by integration of crop growth models in GS frameworks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据