4.5 Article

Buckling behavior of nanowires predicted by a new surface energy density model

期刊

ACTA MECHANICA
卷 227, 期 7, 页码 1799-1811

出版社

SPRINGER WIEN
DOI: 10.1007/s00707-016-1597-2

关键词

-

资金

  1. NSFC [11372317, 11125211, 11402270]
  2. Nanoproject [2012CB937500]
  3. CAS/SAFEA International Partnership Program for Creative Research Teams

向作者/读者索取更多资源

The axial buckling behavior of nanowires is investigated with a new continuum theory, in which the surface effect of nanomaterials is characterized by the surface energy density. Only the surface energy density of bulk materials and the surface relaxation parameter are involved, instead of the surface elastic constants in the classical surface elasticity theory. Two kinds of nanowires with different boundary conditions are discussed. It is demonstrated that the new continuum theory can predict the buckling behavior of nanowires very well. Similar to the prediction of the classical elasticity theory, the critical compressive load of axial buckling of nanowires predicted by the new continuum theory increases with an increasing characteristic length, such as the diameter or height of nanowires. With the same aspect ratio, a nanowire with a rectangular cross section possesses a larger critical buckling load than that with a circular one. However, the surface effect could enhance the critical buckling load not only for a fixed-fixed nanowire but also for a cantilevered one in contrast to the classical elastic model. All the results predicted by the new continuum theory agree well with predictions by the surface elasticity models. The present research not only verifies the validation of the new continuum theory, but also gives a much more convenient characterization of buckling behaviors of nanowires. This should be helpful for the design of nanodevices based on nanomaterials, for example, nanobeams in NEMS or high-precision instruments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据