4.8 Article

A Tunneling Dielectric Layer Free Floating Gate Nonvolatile Memory Employing Type-I Core-Shell Quantum Dots as Discrete Charge-Trapping/Tunneling Centers

期刊

SMALL
卷 15, 期 1, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201804156

关键词

charge-trapping/tunneling centers; core-shell quantum dots; discrete floating gate; nonvolatile memory

资金

  1. National Natural Science Foundation of China [61505108]
  2. Natural Science Foundation of Guangdong Province [2016A030310055]
  3. Science and Technology Innovation Commission of Shenzhen [JCYJ20150625103602228]

向作者/读者索取更多资源

A nonvolatile memory with a floating gate structure is fabricated using ZnSe@ZnS core-shell quantum dots as discrete charge-trapping/tunneling centers. Systematical investigation reveals that the spontaneous recovery of the trapped charges in the ZnSe core can be effectively avoided by the type-I energy band structure of the quantum dots. The surface oleic acid ligand surrounding the quantum dots can also play a role of energy barrier to prevent unintentional charge recovery. The device based on the quantum dots demonstrates a large memory window, stable retention, and good endurance. What is more, integrating charge-trapping and tunneling components into one quantum dot, which is solution synthesizable and processible, can largely simplify the processing of the floating gate nonvolatile memory. This research reveals the promising application potential of type-I core-shell nanoparticles as the discrete charge-trapping/tunneling centers in nonvolatile memory in terms of performance, cost, and flexibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据