4.8 Article

Superior Compatibility of C2N with Human Red Blood Cell Membranes and the Underlying Mechanism

期刊

SMALL
卷 14, 期 52, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201803509

关键词

biocompatibility; C2N; cell membrane; red blood cell

资金

  1. National Natural Science Foundation of China [11574224, 21320102003, 11404233, 11504032]
  2. Natural Science Foundation of Jiangsu Province [BK20161213]
  3. IBM Blue Gene Science Program
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  5. Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection
  6. Chemical Grid Project of Beijing University of Chemical Technology

向作者/读者索取更多资源

The widespread use of nanomaterials, such as carbon based 2D nanomaterials, in biomedical applications, has been accompanied by a growing concern on their biocompatibility, and in particular, on how they may affect the integrity of cell membranes. Herein, the interactions between C2N, a novel 2D nanomaterial, and human red blood cell membranes are explored using a combined experimental and theoretical approach. The experimental microscopies show that C2N exerts a negligible hemolysis effect on the blood cells with a superior compatibility to their cell membranes, when compared with the control system, reduced graphene oxide (rGO), which is found to be highly hemolytic. The molecular dynamics simulations further reveal the underlying molecular mechanisms, which indicate that C2N prefers to be adsorbed flat on the water-membrane interface. Interaction energy analyses demonstrate the crucial role of Coulombic contributions, originating from the unique electrostatic potential surface of C2N, in preventing C2N from penetrating into cell membranes. These findings indicate a high compatibility of C2N with cell membranes, which may provide useful foundation for the future exploration of this 2D nanomaterial in related biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据