4.8 Article

Phosphorus-Mediated MoS2 Nanowires as a High-Performance Electrode Material for Quasi-Solid-State Sodium-Ion Intercalation Supercapacitors

期刊

SMALL
卷 15, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201803984

关键词

electrochemical energy storage; first-principles calculations; phosphorus-mediated MoS2; quasi-solid-state supercapacitors; sodium-ion intercalation

资金

  1. Nanomaterial Technology Development Program [NRF-2017M3A7B4041987]
  2. Korean Government (MSIP) [2015R1A5A1037668]
  3. Science and Technology Development Fund of the Macau SAR [FDCT-098/2015/A3]

向作者/读者索取更多资源

Molybdenum disulfide (MoS2) is a promising electrode material for electrochemical energy storage owing to its high theoretical specific capacity and fascinating 2D layered structure. However, its sluggish kinetics for ionic diffusion and charge transfer limits its practical applications. Here, a promising strategy is reported for enhancing the Na+-ion charge storage kinetics of MoS2 for supercapacitors. In this strategy, electrical conductivity is enhanced and the diffusion barrier of Na+ ion is lowered by a facile phosphorus-doping treatment. Density functional theory results reveal that the lowest energy barrier of dilute Na-vacancy diffusion on P-doped MoS2 (0.11 eV) is considerably lower than that on pure MoS2 (0.19 eV), thereby signifying a prominent rate performance at high Na intercalation stages upon P-doping. Moreover, the Na-vacancy diffusion coefficient of the P-doped MoS2 at room temperatures can be enhanced substantially by approximately two orders of magnitude (10(-6)-10(-4) cm(2) s(-1)) compared with pure MoS2. Finally, the quasi-solid-state asymmetrical supercapacitor assembled with P-doped MoS2 and MnO2, as the positive and negative electrode materials, respectively, exhibits an ultrahigh energy density of 67.4 W h kg(-1) at 850 W kg(-1) and excellent cycling stability with 93.4% capacitance retention after 5000 cycles at 8 A g(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据