4.7 Article

Kinetics and morphological evolution of liquid metal dealloying

期刊

ACTA MATERIALIA
卷 115, 期 -, 页码 10-23

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2016.05.032

关键词

Dealloying; Kinetics; Composites; Diffusion; Metals

资金

  1. National Science Foundation [DMR-1402726, DMR-1003901]
  2. U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-07ER46400]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1402726] Funding Source: National Science Foundation

向作者/读者索取更多资源

Liquid metal dealloying (LMD) has recently emerged as a novel technique to fabricate bulk nano structures using a bottom-up self-organization method, but the literature lacks fundamental studies of this kinetic process. In this work, we conduct an in-depth study of the kinetics and fundamental microstructure evolution mechanisms during LMD using Ti-Ta alloys immersed in molten Cu as a model system. We develop a model of LMD kinetics based on a quantitative characterization of the effects of key parameters in our system including alloy composition, dealloying duration, and dealloying temperature. This work demonstrates that the dealloying interface is at or near equilibrium during LMD, and that the rate-limiting step is the liquid-state diffusion of dissolving atoms away from the dealloying interface (diffusion-limited kinetics). The quantitative comparison between theoretically predicted and measured dealloying rates further reveals that convective transport and rejection of the dissolving element during coarsening of the structure also influence the dealloying kinetics. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据