4.7 Article

Multiphase phase field theory for temperature-induced phase transformations: Formulation and application to interfacial phases

期刊

ACTA MATERIALIA
卷 105, 期 -, 页码 244-257

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2015.12.013

关键词

Phase field approach; Phase transformation; Multiphase system; Intermediate melting; Ginzburg-Landau equations

资金

  1. NSF [DMR-1434613, CMMI-1536925]
  2. ARO [W911NF-12-1-0340]
  3. DARPA [W31P4Q-13-1-0010]
  4. ONR [N00014-16-1-2079]
  5. Iowa State University
  6. Division Of Materials Research
  7. Direct For Mathematical & Physical Scien [1434613] Funding Source: National Science Foundation
  8. Div Of Civil, Mechanical, & Manufact Inn
  9. Directorate For Engineering [1536925] Funding Source: National Science Foundation

向作者/读者索取更多资源

The main conditions for the thermodynamic potential for multiphase Ginzburg Landau theory are formulated for temperature-induced phase transformations (PTs). Theory, which satisfies all these conditions for n-phase material, is developed. The key point is a new penalizing term in the local energy that allows controlling absence or presence and the extent of the presence of the third phase within the interface between two other phases. A finite-element method is applied for studying PT between beta and delta phases of HMX energetic crystal via intermediate melting more than 100 degrees C below melting temperature. Depending on material parameters (ratio of the width and energy of the solid solid (SS) to solid melt interface and the magnitude of the penalizing term), there are either two (meta)stable stationary interfacial nanostructures, corresponding to slightly and strongly disordered interfaces (in the limits, pure SS interface or complete melt within SS interface), or these nanostructures coincide. A parametric study of these nanostructures is presented. The developed requirements and approach are applicable to various PTs between multiple solid and liquid phases and can be elaborated for PTs induced by mechanical and electromagnetic fields, diffusive PTs, and the evolution of multi-grain and multi-twin microstructures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据