4.7 Article

Theory of strengthening in fcc high entropy alloys

期刊

ACTA MATERIALIA
卷 118, 期 -, 页码 164-176

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2016.07.040

关键词

High entropy alloys; Mechanical properties; Solution strengthening theory; Yield stress; Molecular simulations

资金

  1. European Research Council Advanced Grant, Predictive Computational Metallurgy, ERC Grant [339081 - PreCoMet]

向作者/读者索取更多资源

High Entropy Alloys (HEAs) are a new class of random alloys having impressive strength and toughness. Here, a mechanistic, parameter-free, and predictive theory for the temperature-, composition-, and strain-rate-dependence of the plastic yield strength of fcc HEAs is presented, validated, and applied to understand recent experiments. To first order, each elemental component in the HEA is considered as a solute embedded in the effective matrix of the surrounding alloy. Strengthening is then mainly achieved due to dislocation interactions with the random local concentration fluctuations around the average composition. The theory is validated against molecular simulations on model Fe-Ni-Cr alloys. Hall-Petch-corrected yield strengths in Ni-Co-Fe-Cr-Mn fcc HEM are then predicted using only available experimental information, and good quantitative agreement is achieved. The theory demonstrates the origins of the high strength and detailed trends with composition, materials parameters, temperature, thus identifying the key measurable/calculable material properties needed for design and optimization of fcc HEAs, and is a general model for fcc random alloys. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据