4.6 Article

VMSAGE: A virtual machine scheduling algorithm based on the gravitational effect for green Cloud computing

期刊

SIMULATION MODELLING PRACTICE AND THEORY
卷 93, 期 -, 页码 87-103

出版社

ELSEVIER
DOI: 10.1016/j.simpat.2018.10.006

关键词

Virtual machine; Scheduling algorithm; Energy efficiency; Gravitation effect; Cloud computing

资金

  1. National Natural Science Foundation of China [61472192, 61472193]
  2. Natural Science Foundation of Jiangsu Province [BK20141429]

向作者/读者索取更多资源

The area of sustainable green smart computing highlights key challenges towards reducing cost and carbon dioxide emissions due to the high-energy consumption of Cloud data centres. Here, we focus on the Cloud virtual machine (VM) scheduling that is usually based on simple algorithms, e.g. VM placement on nodes with low memory usage. This approach fails to consider the actual configuration of nodes inside the server rack resulting in local overheating of Cloud data centres. To solve this, we propose a VM scheduling algorithm based on the gravitational effect, called VMSAGE, to optimize energy efficiency of Cloud computing systems. Inspired by the physical gravitation model, we define the thermal repulsion and logical gravitation factors between physical nodes and VMs. To achieve optimized VM scheduling, we propose a gravitation function that refers to the calculation of the logical quality of each VM, host and rack through the algorithm, so as to draw the attractiveness between them. Based on the concept of dimension reduction, VMSAGE conducts the two-dimensional plane target selection twice to reduce the computational cost. Additionally, VMSAGE evaluates attributes of the computer room to carry out the VM deployment. To demonstrate the effectiveness of our solution, we compare it with the Best Fit Heuristic (BFH) and the dynamic voltage and frequency scaling (DVFS) algorithms. The results indicate that our algorithm achieves 10% and 20% optimized energy consumption respectively. The experimental results highlight our contribution, in where VMSAGE can significantly reduce energy consumption rates and VM migration times.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据