4.7 Article

In-situ metal matrix composite steels: Effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels

期刊

ACTA MATERIALIA
卷 107, 期 -, 页码 38-48

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2016.01.048

关键词

Metal-matrix-composites; Steels; Liquid metallurgy; Density; Young's modulus

向作者/读者索取更多资源

We systematically study the morphology, size and dispersion of TiB2 particles formed in-situ from Fe-Ti-B based melts, as well as their chemical composition, crystal structure and mechanical properties. The effects of 5 wt.% additions of Cr, Ni, Co, Mo, W, Mn, Al, Si, V, Ta, Nb and Zr, respectively, as well as additional annealing treatments, were investigated in order to derive guidelines for the knowledge based alloy design of steels with an increased stiffness/density ratio and sufficiently high ductility. All alloying elements were found to increase the size of the coarse primary TiB2 particles, while Co led to the most homogeneous size distribution. The size of the eutectic TiB2 constituents was decreased by all alloying additions except Ni, while their aspect ratio was little affected. No clear relation between chemical composition, crystal structure and mechanical properties of the particles could be observed. Annealing of the as-cast alloys slightly increased the size of the primary particles, but at the same time strongly spheroidised the eutectics. Additions of Co and Cr appear thus as the best starting point for designing novel in-situ high modulus metal matrix composite steels, while using Mn in concert with thermo-mechanical processing is most suited to adapt the matrix' microstructure and optimise the particle/matrix co-deformation processes. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据