4.7 Article

Electromagnet design for untethered actuation system mounted on robotic manipulator

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 285, 期 -, 页码 550-565

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2018.11.027

关键词

Electromagnetic actuation; Microrobot manipulation; Electromagnet design; Finite element analysis

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [215M879]

向作者/读者索取更多资源

Electromagnetic actuation systems have remarkably proved themselves in the field of contactless power transmission systems. Nevertheless, the stationary position of the operated electromagnets or their rotation around a fixed axis resulted in a restrictive and limited versatile workspace. In this paper, a new design of a steel cored solenoidal coil is proposed for a novel microrobot electromagnetic actuator. The new system combines a 6 DOF industrial robotic manipulator with co-axially movable electromagnets. Considering the maximum weight and workspace limitations of the robotic manipulator, seven essential dimensions of the electromagnet were investigated with the aid of a simulation software. A set of parametric studies were carried out in order to optimize the homogeneity of the induced magnetic field at the highest achievable intensity based on Ad hoc method. The results showed that an electromagnet with a square prism core and a large front, induces a more homogeneous and intense magnetic field. Moreover, by shortening the length of the coil and increasing the length of the core, the intensity of the magnetic field significantly increases without much affecting its homogeneity. The electromagnet was fabricated according to the final result of the numerical studies and evaluated by performing experimental measurements on the induced magnetic field. Furthermore, with several programed motions, the performance of the proposed untethered electromagnetic actuation system was demonstrated experimentally. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据