4.7 Article

Grain growth and grain translation in crystals

期刊

ACTA MATERIALIA
卷 120, 期 -, 页码 264-272

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2016.08.056

关键词

Grain boundary motion; Grain growth; Phase field; Coupling

资金

  1. National Science Foundation [DMR 1105409, 1507033]
  2. National Science Council of Taiwan [NSC102-2112-M-007-007-MY3]
  3. National Center for Theoretical Sciences, Taiwan
  4. Direct For Mathematical & Physical Scien [1507033] Funding Source: National Science Foundation
  5. Division Of Materials Research [1507033] Funding Source: National Science Foundation

向作者/读者索取更多资源

Grain growth is generally driven to minimize the overall grain boundary energy. However, for low-angle grain boundaries the requirement that lattice planes be continuous across the boundary gives rise to a coupling between the normal motion of the grain boundary and the tangential motion of the lattice. We show through phase-field crystal simulations this coupling in polycrystalline systems can give rise to a rigid body translation of the lattice as a grain shrinks. The process is mediated by significant climb of the dislocations in the boundary and dislocation reactions at the trijunctions. Thus the grain growth process is coupled to vacancy diffusion processes as well as the dynamics of grain trijunctions. Moreover, grain shrinkage can cease because of dislocation behavior near the trijunction, illustrating that this coupling Can have an influence on the grain growth process in polycrystals. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据