4.6 Article

Sensitive Hg2+ Sensing via Quenching the Fluorescence of the Complex between Polythymine and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) Porphyrin (TMPyP)

期刊

SENSORS
卷 18, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/s18113998

关键词

interaction; polythymine; TMPyP; Hg2+; synergistic effect; ternary complex

资金

  1. National Natural Science Foundation of China [21705166, 21575166]

向作者/读者索取更多资源

The interaction between polythymine (dTn) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl) porphyrin (TMPyP) was systematically studied using various techniques. dTn remarkably enhanced the fluorescence intensity of TMPyP as compared to other oligonucleotides. The enhanced fluorescence intensity and the shift of the emission peaks were ascribed to the formation of a pi-pi complex between TMPyP and dTn. And the quenching of the dTn-enhanced fluorescence by Hg2+ through a synergistic effect occurs due to the heavy atom effect. The binding of Hg2+ to TMPyP plays an important role in the Hg-TMPyP-dT(30) ternary complex formation. A TMPyP-dT30-based Hg2+ sensor was developed with a dynamic range of Hg2+ from 5 nM to 100 nM. The detection limit of 1.3 nM was low enough for Hg2+ determination. The sensor also exhibited good selectivity against other metal ions. Experiments for tap water and river water demonstrated that the detection method was applicable for Hg2+ determination in real samples. The Hg2+ sensor based on oligonucleotide dT(30)-enhanced TMPyP fluorescence was fast and low-cost, presenting a promising platform for practical Hg2+ determination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据