4.7 Article

Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings

期刊

ACTA MATERIALIA
卷 121, 期 -, 页码 59-67

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2016.08.084

关键词

Ti-Al-Nb-N; Coatings; Sputtering; ab initio calculations; Hardness; Toughness

资金

  1. Slovak Research and Development Agency [APVV-14-0173]
  2. Operational Program Research and Development [ITMS: 26210120010]
  3. Ministry of Education of the Slovak Republic [VEGA 1/0876/15]

向作者/读者索取更多资源

Obtaining high hardness combined with enhanced toughness represents one of the current challenges in material design of hard ceramic protective coatings. In this work, we combine experimental and ab initio density functional theory (DFT) analysis of the mechanical properties of Ti-Al-Nb-N coatings to validate the results of previous theoretical investigations predicting enhanced toughness in TiAIN-based systems highly alloyed (>25 at. %) with nitrides of pentavalent VB group elements Nb, Ta, and V. As-deposited Ti1-x-yAlxNbyN coatings (y = 0 divided by 0.61) exhibit single phase cubic sodium chloride (B1) structure identified as TiAl(Nb)N solid solutions. The highest hardness,similar to 32.5 +/- 2 GPa, and the highest Young's modulus, similar to 442 GPa, are obtained in Nb-free Ti0.46Al0.54N exhibiting pronounced 111 growth-orientation. Additions of Nb in the coatings promote texture evolution toward 200. Nanoindentation measurements demonstrate that alloying TiAlN with NbN yields significantly decreased elastic stiffness, from 442 to similar to 358 divided by 389 GPa, while the hardness remains approximately constant (between 28 +/- 2 and 31 +/- 3 GPa) for all Nb contents. DFT calculations and electronic structure analyses reveal that alloying dramatically reduces shear resistances due to enhanced d-d second-neighbor metallic bonding while retaining strong metal-N bonds which change from being primarily ionic (TiAlN) to more covalent (TiAlNbN) in nature. Overall, Nb substitutions are found to improve ductility of TiAlN-based alloys at the cost of slight losses in hardness, equating to enhanced toughness. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据