4.7 Article

Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure

期刊

ACTA MATERIALIA
卷 103, 期 -, 页码 448-460

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2015.10.019

关键词

Environmental barrier coatings; Ytterbium silicates; Steam erosion; Channel cracking; Finite element analysis

资金

  1. Office of Naval Research [N00014-11-1-0917, N00014-13-1-0859]

向作者/读者索取更多资源

A recently optimized air plasma spray process has been used to deposit a model tri-layer Yb2SiO(5)/Al6Si2O13/Si environmental barrier coating (EBC) system on alpha-SiC substrates using low power deposition parameters to reduce silicon losses, improve interface adherence and decrease defect concentrations. During cooling, tensile stresses developed in the ytterbium monosilicate layer since its coefficient of thermal expansion exceeded that of the substrate. These stresses drove vertical mud cracks that underwent crack branching either within the Al6Si2O13 (mullite) layer or at one of its interfaces. Upon subsequent thermal cycling between temperatures of 1316 degrees C and 110 degrees C in a 90% H2O + 10% O-2 environment, the branched mud cracks propagated into the Si bond coat and grew laterally along the mid-plane of this layer. The faces of the branched cracks were accessible to the steam environment resulting in the formation of a cristobalite surface layer, which mud cracked due to repeated beta <-> alpha cristobalite phase transformations during thermal cycling. After extended cycling, these cracks linked to cause partial spallation of the coating. The crack branching phenomenon was analyzed using finite element analysis, and the crack trajectory was assessed in terms of the crack driving force controlling kinking from the tip of the mud cracks. A comparison between the present optimized deposition process (performed at low deposition power) with a previous study of a non-optimized process (performed at high power) highlights the importance of reducing the crack driving force and controlling microstructural defects. Finite element simulations provided an effective means to quantify the susceptibility of coating design to failure by the various cracking modalities. (c) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据