4.7 Article

Land use and climate change effects on soil organic carbon in North and Northeast China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 647, 期 -, 页码 1230-1238

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.08.016

关键词

Digital soil mapping; Soil carbon change; Land use change; Climate change

资金

  1. National Key Research and Development Program of China [2017YFD0700501]
  2. Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Science [Y412201430]

向作者/读者索取更多资源

Soil is recognized as the largest carbon reservoir in the terrestrial ecosystem. Soil organic carbon (SOC) is vulnerable to changes in land use and climate. For a better understanding of the SOC dynamics and its driving factors, we collected data of the 1980s and 2000s in the North and Northeast China and conducted the digital soil mapping for spatial variation of SOC for the respective period. In the 1980s, 585 soils were sampled and the area was resampled in 2003 and 2004 (1062 samples) in a 30-km grid. The main land use in the area was cropland, forest and grassland. The random forest was used to predict the SOC concentration and its temporal change using land use, terrain factors, vegetation index, vis-NIR spectra and climate factors as predictors. The average SOC concentration in 1985 was 10.0 g kg(-1) compared to 12.5 g kg(-1) in 2004. The SOC variation was similar over the two periods, and levels increased from south to north. The estimated SOC stock was 1.68 Pg in 1985 and 1.66 Pg in 2004, but the SOC changes were different under different land uses. Over the twenty-year period, average temperatures increased and large areas of forests and grassland were converted to cropland. SOC under cropland was increased by 0.094 Pg (+9%) whereas 0.089 Pg SOC was lost under forests (-25%) and 0.037 Pg in the soils under grassland (-25%). It is concluded that land use is the main drivers for SOC changes in this area while climate change had different contributions in different regions. SOC loss was remarkable under the land use conversion while cropland has considerable potential to sequester SOC. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据