4.8 Article

Isostructural metal-insulator transition in VO2

期刊

SCIENCE
卷 362, 期 6418, 页码 1037-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aam9189

关键词

-

资金

  1. NSF under DMREF grant [DMR-1629270]
  2. AFOSR [FA9550-15-1-0334]
  3. Office of Naval Research [N00014-13-1-0183]
  4. U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-FG02-06ER46327]
  5. National Research Foundation of Korea through the Basic Research Program [2009-0092809]
  6. KISTI supercomputing center [KSC-2015-C3-067]
  7. NSF MRSEC [DMR-1420620]
  8. Global Frontier Hybrid Interface Materials of the NRF - Korea Government [2013M3A6B1078872]
  9. Fundamental Research Program of the Korean Institute of Materials Science [PNK5570]
  10. NSF through the Nebraska Materials Science and Engineering Center (MRSEC) [DMR-1420645]
  11. DOE [DE-AC02-06CH11357]
  12. National Research Council of Science & Technology (NST), Republic of Korea [PNK5570] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  13. National Research Foundation of Korea [2009-0092809, 2013M3A6B1078872] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据