4.8 Article

\ Photonic crystals for nano-light in moire graphene superlattices

期刊

SCIENCE
卷 362, 期 6419, 页码 1153-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aau5144

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0019443]
  2. DOE, BES [DE-SC0018426]
  3. DARPA EXTREME program [HR001110720034]
  4. AFOSR [FA9550-15-1-0478]
  5. Gordon and Betty Moore Foundation investigators in the Quantum Materials EPIQS program [GBMF4533, GBMF4543]
  6. ARO [W911NF-17-1-0574]
  7. ONR MURI [N00014-15-1-2761]
  8. Ministerio de Economia y Competitividad, Spain [FIS2017-82260-P]
  9. Elemental Strategy Initiative, MEXT, Japan
  10. ONR [NO00014-18-1-2722]
  11. CREST, JST [JPMJCR15F3]
  12. DOE-BESD [E-SC0018218]
  13. [ONR-NO00014-18-1-2722]

向作者/读者索取更多资源

Graphene is an atomically thin plasmonic medium that supports highly confined plasmon polaritons, or nano-light, with very low loss. Electronic properties of graphene can be drastically altered when it is laid upon another graphene layer, resulting in a moire superlattice. The relative twist angle between the two layers is a key tuning parameter of the interlayer coupling in thus-obtained twisted bilayer graphene (TBG). We studied the propagation of plasmon polaritons in TBG by infrared nano-imaging. We discovered that the atomic reconstruction occurring at small twist angles transforms the TBG into a natural plasmon photonic crystal for propagating nano-light. This discovery points to a pathway for controlling nano-light by exploiting quantum properties of graphene and other atomically layered van der Waals materials, eliminating the need for arduous top-down nanofabrication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据