4.2 Article

Reactive oxygen species mediated placental oxidative stress, mitochondrial content, and cell cycle progression through mitogen-activated protein kinases in intrauterine growth restricted pigs

期刊

REPRODUCTIVE BIOLOGY
卷 18, 期 4, 页码 422-431

出版社

INST ANIMAL REPRODUCTION FOOD RESEARCH
DOI: 10.1016/j.repbio.2018.09.002

关键词

IUGR; Oxidative stress; Pigs; Placenta; Trophectoderm cells

资金

  1. National Key R&D Program of China [2018YFD0500600]

向作者/读者索取更多资源

Intrauterine growth restriction (IUGR) remains a significant obstacle in pig production; however, information regarding the relationship between reactive oxygen species (ROS)-induced placental dysfunction and IUGR is still unknown. This study aimed to explore the placental redox status, mitochondrial content, cellular progression, and mitogen-activated protein kinase (MAPK) pathways in IUGR. Placental tissues were collected from normal intrauterine gestation (NIUG) and IUGR fetuses at delivery. Compared with the NIUG, placental ROS production, lipid peroxidation, and DNA damage were increased in IUGR. Placental mitochondrial DNA (mtDNA) content and mtDNA-encoded gene expression decreased in IUGR. Moreover, p21 phosphorylation increased, cyclin E expression decreased in IUGR cases, which showed senescence characteristics. Analysis of signaling pathways showed that the ERK1/2 phosphorylation increased whereas the p38 and JNK phosphorylation decreased in IUGR. In cultured porcine trophectoderm (pTr) cells, exogenous H2O2 increased intracellular ROS production, decreased cell viability in a dose-dependent manner. Cell cycle distribution was found to arrest in S and G2/M phases. Our findings suggested that IUGR was associated with greater placental ROS and oxidative injury, which might be a factor that resulted in lower mitochondrial content, microvilli loss and senescence, and activation of MAPK pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据