4.7 Article

Partial shading shading mitigation of PV systems via different meta -heuristic techniques

期刊

RENEWABLE ENERGY
卷 130, 期 -, 页码 1159-1175

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2018.08.077

关键词

Partially shaded PV system; Global MPPT; Grey wolf optimization; Moth-flame optimization; Salp swarm algorithm; Gravitational search algorithm

向作者/读者索取更多资源

Recently, electricity generation from solar photovoltaic (PV) has gained popularity throughout the world due to its profuse availability and eco-friendly nature. Consequently, extraction of maximum power from solar PV energy systems was the point of interest in the current researches. Various techniques have been proposed to track the maximum power point (MPP) from solar PV energy systems under variable environmental conditions. Conventional maximum power point tracking (MPPT) techniques have demonstrated the ability to track MPP with uniform solar irradiance. However, the ability of these techniques to track the accurate MPP with the condition of partial shading (PS) is not guaranteed. Hence, this paper intended to present novel optimization techniques to mitigate the PS effect and proficiently track the global maximum power point (GMPP). Grey Wolf Optimization (GWO), Moth-Flame Optimization (MFO), Salp Swarm Algorithm (SSA) and Hybrid Particle Swarm Optimization-Gravitational Search Algorithm (PSO-GSA) techniques have been proposed to handle this dilemma. The proposed techniques have been simulated and analyzed using MATIAB/SIMULINK. Furthermore, these techniques have been compared with the conventional PSO algorithm for validation. Statistical and sensitivity analysis have been established to compare the performance, check the stability, and determine the best technique out of the proposed techniques. Results showed the superiority of GWO in the speed of convergence and the time to catch GMPP. Moreover, the sensitivity analysis demonstrated the stability, successfully rate, and tracking efficiency of P50-GSA technique. Finally, this paper gives an open reference to these optimizers to attempt mass research works in PV systems under PS. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据