4.4 Article

Toward understanding the ionization mechanism of matrix-assisted ionization using mass spectrometry experiment and theory

期刊

出版社

WILEY
DOI: 10.1002/rcm.8382

关键词

-

向作者/读者索取更多资源

The MAI matrix 3-NBN can produce intact, highly charged ions of nonvolatile compounds in high-vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, showing a different ionization mechanism from typical MALDI matrices. The morphology of 3-NBN:analyte crystals plays a significant role in ion generation in high vacuum.
Rationale Matrix-assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix-assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum. Methods Eleven MAI matrices were studied on a high-vacuum time-of-flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3-nitrobenzonitrile (3-NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser. Results Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3-NBN produces intact, highly charged ions of nonvolatile analytes in high-vacuum TOF with the use of a laser, demonstrating that ESI-like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3-NBN matrix at 266 nm laser wavelength. 3-NBN:analyte crystal morphology is, however, important in ion generation in high vacuum. Conclusions The 3-NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high-vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据